APS MARCH MEETING MARCH 04, 2019

RECENT ADVANCES IN PARSEC FOR PERFORMING LARGE-SCALE ELECTRONIC STRUCTURE CALCULATIONS IN REAL SPACE

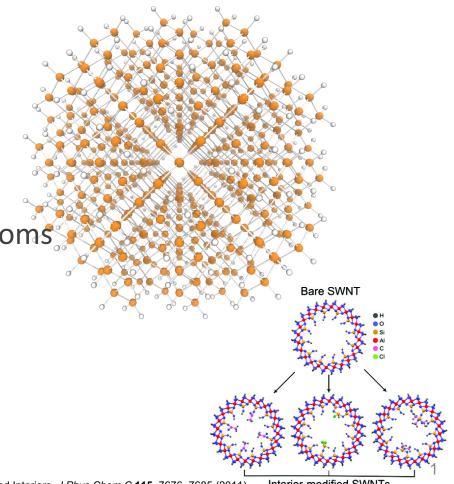
Kai-Hsin Liou^{1*}, James Chelikowsky¹, and Chao Yang²

- ¹ The University of Texas at Austin
- ² Lawrence Berkeley National Laboratory

ICES

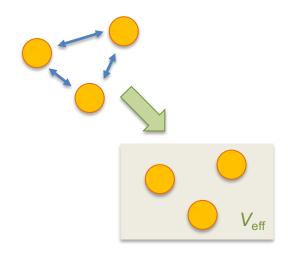
Motivation

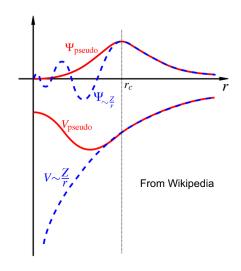
- Silicon nanocrystals
 - Optoelectronics
 - 10 nm in diameter ~ 30,000 atoms
- Inorganic nanotubes
 - Catalysis
 - Water desalination
 - 20 nm in length ~ 5,000 atoms

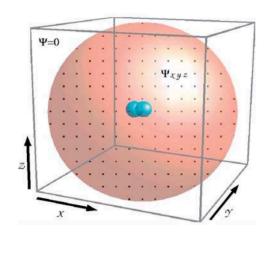


PARSEC

Pseudopotential Algorithm for Real-Space Electronic Structure Calculation https://real-space.org/







Kohn-Sham DFT

N interacting electrons → N independent e's

Pseudopotential

All electrons →
Only valence electrons

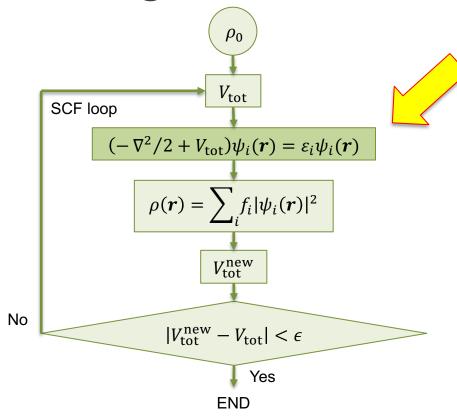
Real-Space Grids

Finite difference method

Ease of implementation

Suitable for confined systems

Solving the Kohn–Sham Equations



Key to large systems:

An efficient eigensolver

Observation: intermediate SCF iterations require only converged charge density, not individual wfns

Chebyshev-filtered Subspace Iteration

- 1. Filtering
- 2. Orthonormalization
- 3. Rayleigh-Ritz method

Filtering

Enhance the subspace constituting the occupied states

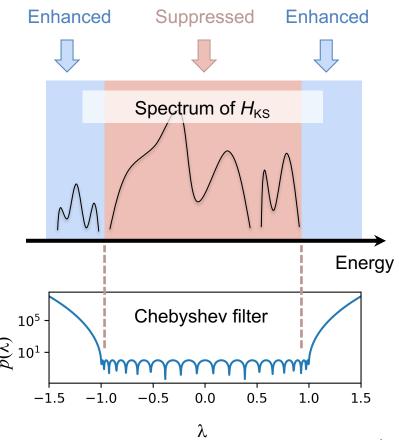
 $\tilde{p}(H_{\mathrm{KS}})$: Chebyshev polynomial of H_{KS} v: a state

 u_i : eigenstates λ_i : eigenvalues

$$\tilde{p}(H_{\mathrm{KS}})v = \tilde{p}(H_{\mathrm{KS}})\sum_{i=1}^n c_i u_i = \sum_{i=1}^n c_i \tilde{p}(H_{KS})u_i = \sum_{i=1}^n p(\lambda_i)c_i u_i$$

Expand *v* in terms of eigenstates

Operate the polynomial of H_{KS} to each eigenstate



Orthonormal. & Rayleigh–Ritz method

Generate approximate eigenpairs from a subspace

Algorithm 2 Cholesky QR

- 1: **procedure** V = ORTH(W)
- $A = W^T W$
- Find an upper triangular R such that $A = R^T R$
- $V = WR^{-1}$

- $\triangleright A$ is positive definite
- ▷ Cholesky factorization

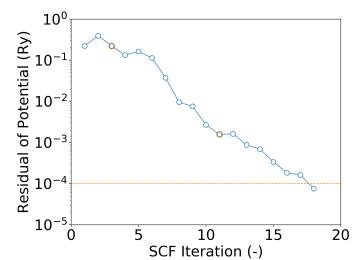
Algorithm 3 Rayleigh–Ritz refinement

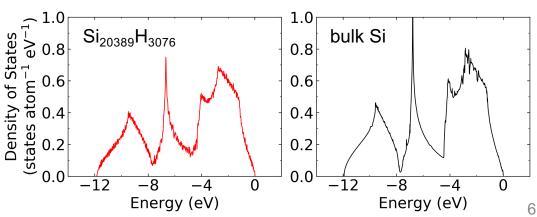
- 1: **procedure** (V,D) = RAYLEIGHRITZ(V)
- $A = V^T H V$
- Compute Q, D such that AQ = QD and $Q^TQ = I$.
 - $\triangleright D$ has the Ritz values
- $V \leftarrow VQ$

Still need to diagonalize a smaller dense matrix

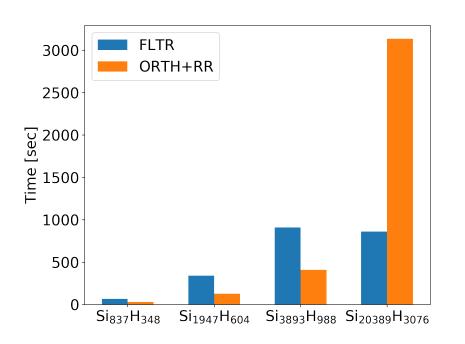
Results

- Si₂₀₃₈₉H₃₀₇₆
- # of occ. states = 42,316
- Cori Haswell
 - 4,096 cores
 - 19 hours





O(N³) Ops Start to Dominate



- Filtering O(Nsk)
- Orthonormal. $O(Ns^2)$
- Rayleigh–Ritz $O(Ns^2 + s^3)$

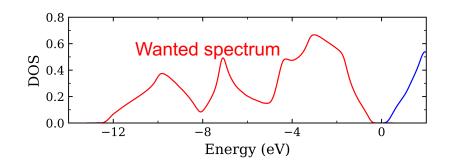
N: # of grid points

s: # of states

k: degrees of filters

Goal: To reduce s

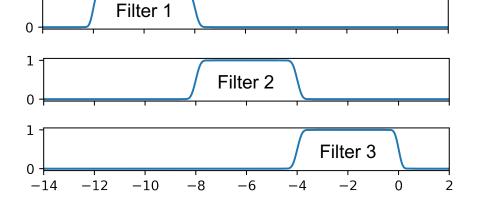
Idea of Spectrum Slicing



Slice 1

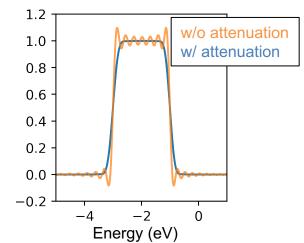
Slice 2

Slice 3



Chebyshev-Jackson filter

$$\tilde{p}(H_{\text{KS}}) = \sum_{i=0}^{k} \gamma_i(a, b) g_i(k) T_i(H_{\text{KS}})$$
g_i(k): attenuation coefficient



Spectrum Slicing Method

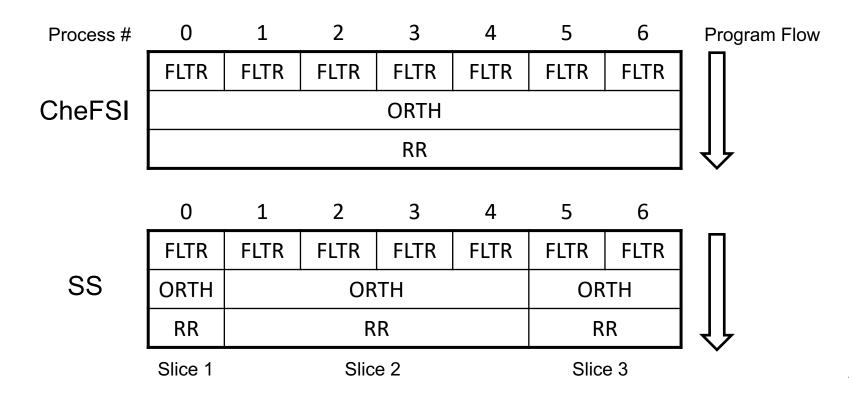
- 1. Dividing the wanted spectrum into slices
- 2. Performing polynomial-filtered subspace iteration in parallel
- 3. Combine spectra and calculate new charge density
- Shifting the burden of diagonalization to cheaper filtering
 - Diagonalization in Rayleigh-Ritz is $O(s^3) \sim O(N^3)$
 - Filtering is $O(Nsk) \sim O(N^2)$

N: # of grid points

s: # of states

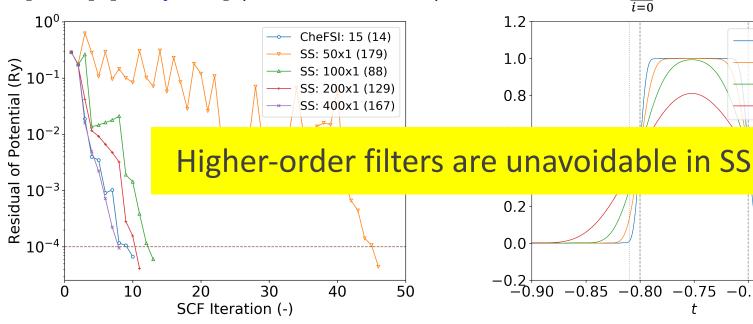
k: degrees of filters

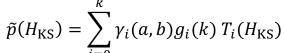
CheFSI vs. Spectrum Slicing

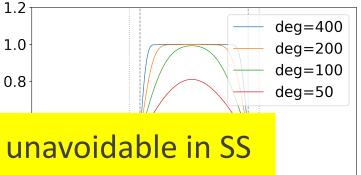


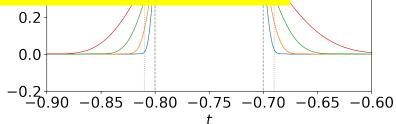
Influence of Degree of Filters

[DOF]x[SI cycles] (Time to solution)

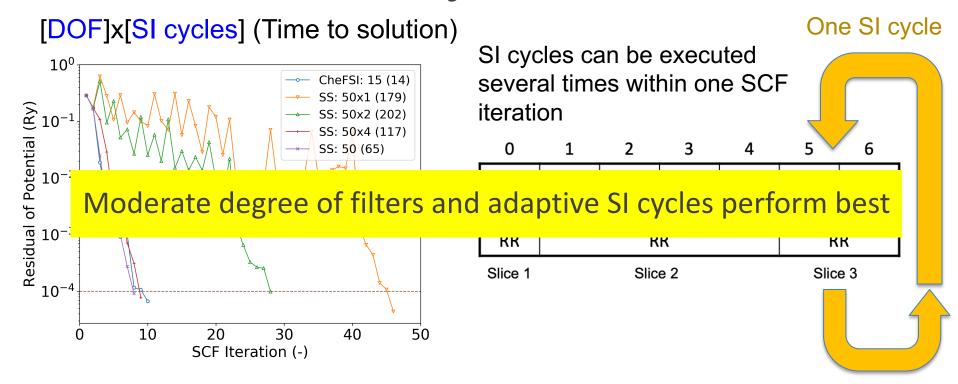








Influence of SI cycles



Summary

- Electronic structure of a confined system with over 20,000 atoms was solved by Chebyshev-filtered subspace iteration (filtering + Rayleigh-Ritz method)
- A subspace iteration spectrum slicing method is proposed for large electronic structure calculation
- There are more! → Structure Problems

<u>Session H36: Real-Space Methods for Large Scale Electronic</u> Structure Problems

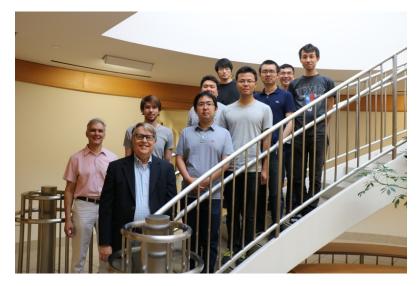
H36.00001

James Chelikowsky

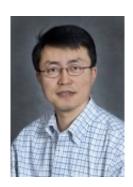
2:30 PM-3:06 PM, Tuesday, March 5, 2019

BCEC Room: 205C

Acknowledgements



Center for Computational Materials



Chao Yang

Office of Science

