Space-Filling Curves for Real-Space Pseudopotential Density Functional Theory Calculations

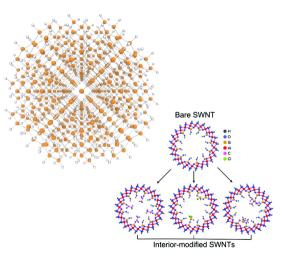
Kai-Hsin Liou¹ Ariel Biller² Leeor Kronik² James R. Chelikowsky¹

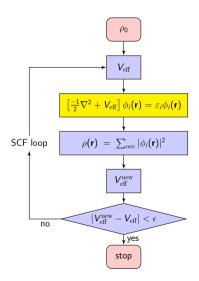
 1 McKetta Department of Chemical Engineering, University of Texas at Austin, United States 2 Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Israel

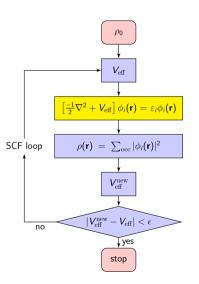
APS March Meeting (F19.4) March 16, 2021

Motivation – electronic structure of large systems

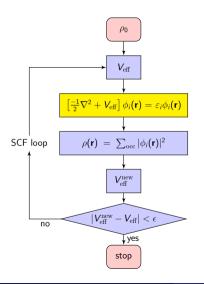
- Silicon nanocrystals
 - Optoelectronics
 - Quantum computers
 - 10 nm in diameter \sim 20,000 atoms
- Nanotubes
 - Catalysis
 - Water desalination
 - ullet 20 nm in length \sim 5,000 atoms







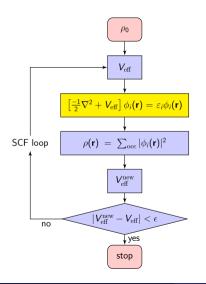
Key to large systems: An efficient eigensolver



Key to large systems: An efficient eigensolver

Observation

A converged charge density (rather than individual wfns) is enough to advance the SCF iteration



Key to large systems: An efficient eigensolver

Observation

A converged charge density (rather than individual wfns) is enough to advance the SCF iteration

Chebyshev-filtered subspace iteration

- Filtering
- Orthonormalization
- Rayleigh-Ritz refinement

Chebyshev filtering requires many MatVecs

• H is not stored, accessed via Hv

H: Hamiltonian matrix

v: wave functions

• Cost $\sim O(Nsm)$

N: number of grid points

s: number of states

m: degree of the filter

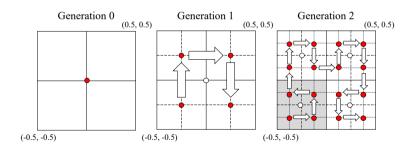
 Faster Hv → more efficient eigensolver :)

```
Algorithm 1 Chebyshev filtering
```

```
1: procedure W = \text{ChebyFilter}(H, V, m, \varepsilon_F, \lambda_{\text{ub}}, \lambda_{\text{lb}})
2: e = (\lambda_{\text{ub}} - \varepsilon_F)/2
3: c = (\lambda_{\text{ub}} + \varepsilon_F)/2
4: \sigma = e/(c - \lambda_{\text{lb}})
5: \tau = 2/\sigma
6: W = (HV - cV)(\sigma/e)
7: for i = 2 \rightarrow m do
8: \sigma_{new} = 1/(\tau - \sigma)
9: W_t = (HV - cV)(2\sigma_{\text{new}}/e) - (\sigma\sigma_{\text{new}})V
10: V = W
11: W = W_t
12: \sigma = \sigma_{\text{new}}
```

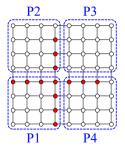
Space-filling curves for faster Hv

- One-dimensional representation of multi-dimensional space
- Self-similarity
- We use Hilbert space-filling curves

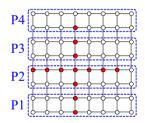


Space-filling curves for real-space grid partitioning

- Good locality of grid points
 - Lower communication overhead
 - More load-balancing



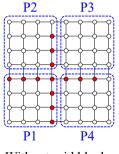
Partitioning using Hilbert curves



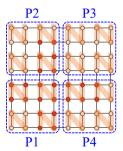
Partitioning using **simple** Cartesian ordering (SCO)

Space-filling curves for real-space grid partitioning

- Use of grid blocks
 - Blockwise operations (vectorization)
 - More efficient indexing



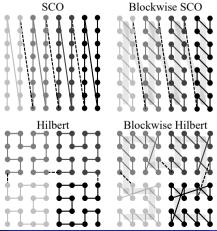
Without grid blocks



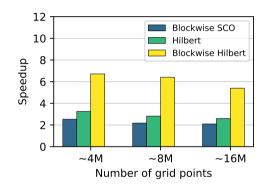
With grid blocks (blockwise)

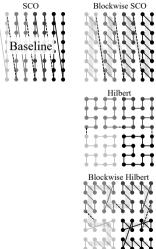
Four grid partitioning schemes

- Hilbert ordering or simple Cartesian ordering (SCO)
- non-blockwise or blockwise



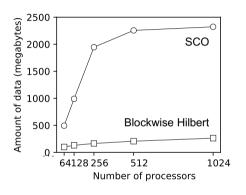
Results – speedup

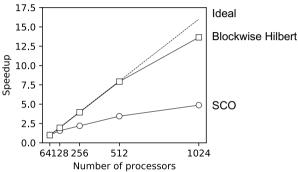




- Blockwise ops → improved vectorization
- ullet Hilbert curves o improved communication

Results – scalability

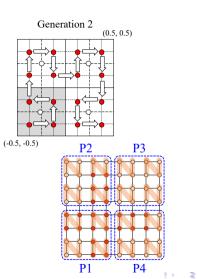




- Less data to transfer and more load-balancing
- Better scalability

Summary

- Space-filling curves for real-space pseudopotential DFT calculations (e.g., PARSEC code)
 - Hilbert curves
 - Blockwise opertions
- Reduced communication between processors, increased opportunity for vectorization, and improved scalability of the filtering step



PARSEC (http://real-space.org/)

Acknowledgements

Center for Computational Materials

Dr. Ariel Biller

U.S. DEPARTMENT OF ENERGY

Office of Science

National Energy Research Scientific Computing Center

